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ABSTRACT

A theory is developed for the generation of Alfven waves by the

mixing of whistler waves. Calculations are carried out for inter-

action in the magnetosphere where the whistlers fall. in the VLF frequency

range, and the Alfven wave in the ULF (1-5 Hz) range. 
Typical amplitudes

of 2-5 my for the Alfven wave are calculated, and it is shown that these

values might be increased by one order of magnitude through suitable

variation of the experimental parameters. The study thereby develops

a possible explanation for naturally occurring Pc 1 micropulsations,

and demonstrates the feasibility of artificial generation of such 
micro-

pulsations by ground-launched whistlers.

ii



CONTENTS

Page

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . ii

LIST OF FIGURES . . . . . . . . . . . . . . . . ... . iv

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . 1

2. SYNCHRONISM CONDITIONS . ............... . 3

3. COUPLED MODE EQUATION . ............... . 4

4. CONSTANTS OF THE COUPLED MODE . ........... . 9

5. FIELD STRENGTH OF THE ALFVEN WAVE . ........ . . 17

6. A SAMPLE CALCULATION . ................. 19

7. MAXIMIZATION OF THE WAVE FIELDS . ........... 21

APPENDIX . . . . . . . . . . . . . . . . . . . . . ... 23

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . 24

iii



FIGURES

Page

1. Schematic of wave trajectories and interaction region . . 25

2. Synchronism diagram for interaction between two

whistlers and an Alfven wave . .............. 26

3. Coordinate system .................... 27

4. Diagram of K-vectors lying in a plane of the static

magnetic field . . . . . . . . . . . . . . . . . . . . . . 28

iv



1. Introduction.

A number of studies have been made of nonlinear three-wave interaction

between circularly-polarized waves such as whistlers [Harker and Crawford,

1969, Kim et al, 1971]. In that case all three waves are high frequency,

i.e. they depend primarily on the electron rather than the ion

motions. Another related problem of equal importance is the possibility

of interaction involving a low frequency wave,i.e. a mode in which ion

motions play a role. In this paper we shall consider the interaction of

two whistlers to produce an Alfven wave. We will restrict ourselves to

the study of waves propagating at small angles, 9 , to the geomagnetic

field, in which case the interaction is proportional to e . This problem

has been previously studied by Suramlishvili [1967] for the limiting

case where the angles, 9 , are zero and the interaction vanishes.

Although our analysis will be quite general, our primary concern will

be with the magnetosphere as the medium in which interaction takes place.

In this case the whistlers lie in the VLF,and the Alfven wave in the

ULF (1-5 Hz) frequency range. Our purpose in studying this region is two-

fold. First, we will show that naturally occurring whistlers can generate

Pc l.micropulsations which fall within the observed intensity range of

1-1000 my [Jacobs, 1970],and thereby demonstrate the possibility of a

mechanism for the generation of such naturally occurring micropulsations.

Second, our calculations will demonstrate the feasibility of using

whistlers launched from ground-based transmitters for the generation of

artificial micropulsations.

The geometry to be considered is shown in Fig. 1. Two whistlers

follow a trajectory along a geomagnetic field line. In a region of width

L, located a distance Z along the magnetic field line from the equatorial



Plane,the difference frequency and wavenumber correspond to a propagating

Alfven wave. Because of this resonant condition, the two whistlers mix

to produce Alfven waves, which then propagate out of the region as shown

in the figure.

As mentioned above, we will restrict ourselves to the study of waves

propagating at small angles to the geomagnetic field. Under these circum-

stances we are concerned with the waves whose dispersion curves are plotted

in Figure 2. The upper branch is a whistler, while the lower is an ion-

cyclotron wave. In the region 0 < << Wci , where Wci is the ion

gyrofrequency, the curves coalesce to form the region corresponding to

Alfven waves. The dispersion relation for the whistler is given by

[Clemmow and Dougherty, 1969],

2 2 _K 2 0 (1)
ce

and the Alfven wave by

K 2 i (2)
0ce ci

In these equations we have used normalized units for the wavenumber,

frequency, and the electron and ion gyrofrequencies,

K = kc/WO =/W 0  ce Wce /WO ci =  ci /W , (3)

where

eIBO elBO 2 m m.
W - - I WO , m -

ce m ci m 0 m +m.
e 1 me e i

(4)
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As mentioned above, the two waves which mix will be whistlers, and the

product wave of the mixing will be the Alfven wave. We will denote the Alfven

wave by subscript 1, the lower frequency whistler by subscript 2,

and the higher frequency whistler by subscript 3.

2. Synchronism Conditions.

For nonlinear interaction to occur, it is necessary that the synchronism

conditions

K3 = K 2 + K1i 3 = + (5)

be satisfied, i.e., the points (0, 0), (K3 , 3), (K2 , 2 ),(K 1, 01)

must form the vertices of a parallelogram in the (K, 0) plane, as shown

in Figure 2. Since the Alfven waves have a linear dispersion relation,

it is clear from the figure that, for sufficiently small K 1  and C1 '

(K2, 2) and (K3 , Q3) lie on that portion of the whistler dispersion curve

where the group velocity equals the Alfven wave velocity. From Eqs. (1)

and (2), K2, K 3, 2' 3  are given by

K2 K3 K 1 ' 2 3 =0 (6)

where K and n are determined by the simultaneous solution of

the equations

2 2 0
K =0 + , (7)

ce 0>

dK 2ce
2 K d =  0 ce 2 ' (8)

00 ce 0

dK 1

d 1 (9)
ce ci
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Since (2 ce- ) << 1, we may neglect the term 0 in Eq (7) and

obtain

2 ce

K +1 = _ (10)
ce

For the same reason we may neglect the term 20 in Eq.( 8 ) and

obtain

2 ce )l/2 )K (11)

ci c e 0

Combining these gives the final equation for KO: (12)

(K + 1) = 2( -E K
0 ci 0

From Eq. (10) we obtain the corresponding value for O in the form

2
O K
__O 0 (i)

0 2
ce 1+K

0

3. Coupled Mode Equation.

The growth of the Alfven wave in the interaction region is governed

by a well-known coupled mode equation which we may write in the notation

of Galloway and Crawford (1970) as

Ag B l - r E p E P ( 1 4 )- 1 ". =R 0 p2 p3 ,

4



in terms of the dimensionless variables

V =V 1/c R = rW /c , E P e/m c (15)
.g 1-g1 -O P p 0'

where V is the group velocity, r is distance, and E ,2,3
1 p1,2,3

is the component of the wave electric field perpendicular

to the plane containing both K and B . Constants r V and F

are defined by'Galloway and Crawford [1970],and will be determined in

the next section.

We next set up a rectangular coordinate system for R with

Z along the geomagnetic field. Because all waves are assumed to

propagate at small angles to the geomagnetic field, we may ignore

the traverse components of the product on the left-hand side of

Eq. (14), and then integrate along Z to obtain

E 1 --F E E , (16)
Epl Ig 0 p 2  p 3

lgl

where L = dZ is the width of the interaction region. In a recent

paper [Harker and Crawford, 1970] it has been shown that

2 (k -k -k )
L = (2n/P)1 / 2  = (z r (17)0az 1r (17)

Here subscript r denotes that the derivative is evaluated at the point

in space where the synchronism conditions are exactly satisfied and

z = Zc/w 0 . Non-zero values of P arise from inhomogeneities in B0  and

the plasma density. This equation is based on the supposition that

(k 3 -k 2 -kl) can be approximated by a linear function of z

5



We may easily evaluate P by using the relation

d(k 3 -k2-kl) I a(k 3k2-kl) dwce o(k3-k2 -k1) dwr 32 d + -- r (18)

dz a w dz dz r
r ce o

the dispersion relations,

WO 2 3  1/2 W0 W 1
k , k (19)
2,3 c W 0ce-W2,3 1 c (w wc )1/2

and the subsequent synchronism condition

3 1/2 2  )/2 l

c ce-W 3  ce-W2 ( .)ce 1/2
ce c

(20)

Let us concentrate on the first term in Eq. (18), which arises from

inhomogeneity in the geomagnetic field. Differentiating Eq. (20)

with respect to wce, and substituting Eqs. (13) and (19) gives

2 2

d(k3-k-kk) 1 K3 +1 3/2 +1 K 3/2 2K 1  (21)
2 3 2  2 1

dw ce 2 K r
ce

Using the relation K3 = K2+ K 1 'and remembering that K1 << K2 ,we

can write the first term on the RHS of 
this equation as

2 2 K
K 3 +1 3/2 K22 +I 3/ 2 + 3K/2 -K3/2] 1 (22)

3
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This reduces Eq. (21) to the form

d(k 3 -k 2 -kl) K 1 K1/2 + -3/2 (23)

dw 4c L 0 Q0-
ce r ce

if we replace K2 by'its approximate value, K . The factor d(ce/dz

is evaluated from the formula for the geomagnetic field given by

Helliwell [1967]

dw e 9 z dz , (24)
ce 2

m

where W is the electron gyrofrequency on the equator, and rm is

the distance from earth's center. If we approximate by replacing WcO

by W ce on the RHS of this equation, we obtain

dW 9W02 Zce
ce 0 ce (25)

dz c R
m

We now show that the second term on the RHS of Eq. (18) is zero.

Differentiating Eq. (20) with respect to w. and substituting Eq. (19)

gives

(k3-k2-kl) l1
-2 (K 3 -K 2 -K 1 ) = 0 . (26)

aO r c 3 2 1r

The final formula for the interaction length is then simply obtained

by substituting Eqs. (23) and (25) into Eqs. (17) and (18), yielding

KZ

- - f(K (27)
R 2 (K)
R

m

where

9 1/2 -3/2
f(K0) = (4 - 3KO + KO  ) . (28)

7



The case of interaction on the equator requires special treatment,

since the function (k3-k2-k l) is no longer a linear function of z ,

but quadratic instead. It is shown in Appendix A that the interaction

length in this case is given by

L = (6/)1/3 (13) (29)
31/2

where
_2(K -K -K 1 3  2 (k -k -k )

2 1 c3 2 1 (30)
V 2  r ( C Z r

and f(1/3) = 2.68 is the gamma function [Abramowitz and Stegun, 1964 .

Straightforward differentiation shows that

2 2 2ce
(k-k-k) (k3k2k 1 ) dUO dW

2 ce dz U ce dz dz
dz r ce

2 (k3-k2-kl ) (d 0 2 + (k3-k2-k) d 2 ce +(k 3 -k 2 -kl) d2 0  (31)

2 dz ce dz O dz2 r

Because of the symmetry of the magnetic field about the equator it is clc..1

that

le Ir = 0. (32)
dz

A simple extension of the argument leading to Eq. (26) shows furthermore

that

2 (k 3 -k 2 -kl) 1 0
= _ .2 r =0(33)

2

Substituting Eqs. (26), (32), and (33) reduces Eq. (31) to
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d2 1 2
d (k3-k2-kl) (k3-k2-kl) d Wce (34)

2 2
dz r Uce dz r

while from Eq. (24) we can show that

2 3

ce 0 ce (35)
2 2 

(
dz c R

m

Combining Eqs. (23), (28), (30), (34), and (35) yields for 7 the

equation
K 1

7= - f(K O ) (36)

R
m

4. Constants of the Coupled Mode Equation.

In this section we calculate the constants 1 Vg 1 and FO that

appear in Eq. (16). It is convenient to follow the same line of 
attack

as Galloway and Crawford [1970],with inclusion of ion 
motion. We write

the scalar and vector potentials as

2(37)
V = e/c , A = Ae/mc , (37)

the particle displacement vector as

h e = Sr 0 /c , A =i 6i w/c ' (38)

the equilibrium position and the time as

R =r W/c T = W t , (39)

where V, A, 8r, 0 , and t are the corresponding dimensional physical

quantities.

In terms of these variables, we may write the Lagrangian density as

9



Sm .2 mi .2 1 2 1 2 (40)

=- e 1- + Ai + [V-A .A+A.-A + [vV+A - [XZVA (40)
2- e 2e- 1 -e ~ J 2

m m

Both V and A are functions of D+ ei ' while all other terms are

functions of R only. Expansion of Eq. (40) as £ = £O + al + £2 + "'"-03

yields

m .2 .2 1 2
e + i 2 _ (A - A 1A 1 (A )2 , (41)

2 2 - e 2 1 e 2l 2
m m

S -A A + A A -- ) A1 (42)
3 -- e -- R 0 -1 1 R)

where A has been replaced by a background, A., and a perturbation

A and a gauge has been chosen so that V is a constant
T

(VA = -f (Ne+N)dT'). Since the second term in Eq. (42) can be

0 2
shown to be smaller than the first by the ratio (me/mi) , it can be

ignored, and £3 can be written simply as

£3 =-1 1 j (43)

For small-signal propagation as exp i(OT-KR ) we have Clenmmow

and Dougherty, 1969]

S-12 cos20 iD f 2 cos 9 sine

-iD S- 2  0 * E= 0

f2 cos a sin 2  2

(44)

where

12 = K2/ 2 , p = - / 2 , (45)

10



2
2 - Oce Oci O(ce - ci)

S= - 2 2 2 D=- 2 2 2 2

( )(- ce ci) ce ci)

and K lies in the X - Z plane at angle 6 to the Z-axis. A

rotation operator, R , will be used to generalize the propagation to

spherical angles e9, as shown in Fig. 3. For 0 < 9 < n/2 , all

E components are nonzero. We will choose to express Ae, and A

in terms of the component E perpendicular to K and the Z-axis.

We then have

A = E , A = U E , = R C' , U = RU' , (46)
p. -1. p~ -

where

cos b - sin 0

R = sin k cos 0 , (47)

0 0 1

-J 2 - 0ce D + Q(S-r2)2 2ce2

CD (0 - ce )
ce

m -1 -c (2-S) (48)

2! 2 2 -(Sm 2 2 ce

j 12 (S- 2 ) cos 0 sin 0

02 D(P -1 2 sin 2)

8 -n2

DD

U' = .i/O

S2(S-_2) cos e sin 9

D (P- 2 sin2 e) (49)

The constants in ther coupled mode-equations are determined

by the relations [Galloway and Crawford, 1970]

11



i(A+ A + A* A + A. + A* A + A + A*) + c.c. = i E E E*
8 3 le( 2e 3e i 2i 3i 1 2 3 O pl p2 p3

(50)

= - A XX X A = V E E (n=1,2,3). (51)
-n -na -gn n pn pn

Substituting Eqs. (46) into Eqs. (43) and (51) then yields

expressions for these constants in the form

2(52)
U2 1/2

-gl F1 = 2- --
2 *

[ '* *

O 8 n2 -2 -- 13 U-3 E3 101 3

+ )3 13[(~ 1K 2 ) U2 +-21U ]

In order to obtain the salient features of the interaction

without becoming lost in a tangle of algebraic complexities, we make

the specification that the wave vectors of all three waves lie in a

plane which contains the magnetic field, B as shown in Fig. 4.
-0

This means that we can take 0 = and R = 1 for all three waves

in Eqs. (46) and (47).

We next emphasize the implications of our assumption that the

angles 0 << 1: since we are dealing here with transverse waves,

this means that that portion of the matrix in Eq. (44) multiplying the

transverse components of E must be approximately zero, or equivalently,

that

12



S - H2 = D . (54)

Substituting into Eqs. (48) and (49) then yields

U = U + u OU = E + e , (55)
-a.. -Z - ..

where

a l2

U = U = -i' -z TP -z

-- 2
S m jg_ m - lS= = & i , (56)

S m ( ±  ce ) -z m 2 P-z
e ce e jep

a = i + ji
S --x -y

and i , i , and i are unit vectors along the X, Y, and Z axes,
-X -y -z

respectively. The assumption that 0 << 1 also implies that

K = 0K + K , (57)

where

K = Ki , K = Ki , (58)
-a. -x -z -z

In particular, for whistlers weemust take the lower sign in

these equations, and the above vectors become

2

a n
U U n (59)

.In n - n Cn -

2

m ja m Kn
S= 3 i (n = 2,3)

-In m n(0 n -  ) 'zn m 2 -z
e n n ce eQ

n

provided we assume

13



P = 1 1P 1 2 (60)
n 2 2

n n

For the Alfven wave we use Eqs. (2) and (60), and thecondition

"2<< 0 and n , (61)
1 ce ci

and the corresponding vectors become

K

Ul =  a = ± 1 - i (62)

ce ci

- i
JC -m -- z (63)

lzl m - m e 1 e e ce Oci

In order to evaluate FO , we first expand it to lowest order in

81 82 and 03  Substituting Eqs. (55) and (57) into Eq. (53),

and retaining only terms up to first order in these angles,yields

1 *
r - I(e -U )(0 3 E -2 K3 + 92 Ez2 Kz3)O ~11 U3 ) -2 3 2 32 - 3

- (2 *U )(0 K + 9 K )
1 11 -±2 2 -±3 - 2 3 r3a --z2

+ 02-2 U3) 3 L1 -- 13 +  1 zi z3 )  (64)

2( U )(0 * K + 8 K )
-2 l)(1 1 -±3 - 1 3 -3 - l

+ 3( * U )(e2 K + z 2 )
3 -12 - -1 -±2 1-zl -'2

+ 3( '- Uz )(I 2 K.I2 + 02 E-z2 K z

We next expand Eq. (64) in powers of 1  and K . Both 01

and K 1  are of the same order because of the dispersion

relation, Eq. (2). In carrying out this expansion we must eliminate

all terms corresponding to Wave 2 in terms of Wave 3, or

14



vice versa, since the differences involve terms of differing order in

01 * We shall choose the former alternative. Starting with the

synchronism conditions, given by

2 =3 1 K2 = K3 - K1 , K2 2 = K3 3 - K1  1 ,  (65)

we are thus led to the expansions

1 1+
0 + ( - U 2  ... (66)

+3 1

.L2 _± 3 3 + 3 ce ' (67)

+ 2 .2K

Zz2 = z3 1O+ K3 (68"

Substituting Eqs. (65)-(68) into Eq. (64), we observe that all terms

0
are of order 0i except the third and fifth, each of which is of

-1 -1
order 01 However these terms of order l cancel., and we are

0
left to lowest order with terms of order 0 Collecting terms,

simpli.fying,,nd. replacing K3 -and 03 by K O and CO, respectively,

finally leads fb' the expression

15



04 [l3 g 3 (K) - 1 1(K] 
(69)

ce

where

K K3 K2 e 1/2

g3 (K) 4 2 -3 _0

(1c z) Qe (t/ce)l O ce

l ce /ci /2 (70)

gl(K) 2
4(1 - Oce )

The remaining constant in the coupled mode equation, Vgl rl

is readily obtained by substituting Eqs. (55) and (57) into Eq. (52).

To lowest order in 01 we obtain

1 2 2 1 (71)
-gl 1 2 1 U11  z 1 -z

or, after substitution of Eq. (62), simply

V g r1 = (K 1 /)i . (72)

16



5. Field Strength of the Alfven Wave

Substituting Eqs. (17), (27), (69), and (72) into Eq. (16) yields

the final equation for the Alfven wave electric field strength in the

form

1/2 R2 1/2

2 R 12 Rm 1 (m/me)2 8 3g3(Ko)- 1gl (K *E

lp f(KO)J 05/2 0 3/4 2p 3p

ce ce ci (73)

The associated wave magnetic field strength is determined by substituting

Eq. (2) into Maxwell's equation

K X E1  = B (74)

This yields

(nce/ ci /2Elp (75)
IB - 0

ce

It is useful to write these equations in dimensional form, in which

case we obtain

1/2 r2  1/2 2 5/2 [93g3(Ko)- o1g1 (K)]e.
2 1/2 rm W1 (m/me  3 3 0 1 1(K0 E  E

lp fO zc 52 )3/4 me E0 2p 3p
ce (ceWci m 0 70

(76)

(W e/Wci)1/2 W

IB = E 1p (77)

Wce c

One will notice from examining the above equations that the

strength of the Alfven wave approaches infinity as the interaction

region approaches the magnetic equator. This is merely a reflection

of the fact that the assumption of a linear dependence of the sum

k -k -k on arc length embodied in Eq. (17) breaks down at the

equator, where k3-k2-k 1 varies as the square of the arc length.

17



There is obviously some lower limit on how small z can become in

the above equations. A suitable criterion is simply that the center

of the interaction region can be no closer to the magnetic equator

than the half width of the interaction region:

z > L/2 (78)

Substituting Eqs. (2), (17), and (27) into this inequality implies the

criterion

1/3
z ce c
-- > (79)
rm  2f(K0) lw 0 rm (Wceci )12

When the interaction region is centered on the equator, we proceed

as above but use Eqs. (29) and (36) in lieu of Eqs. (17) and (27). We

then obtain the Alfven wave electric field in the form

[6/f(K0)]1 / 3 F(1/3) 2/3 (m/me) 2 3 g3 (K0 )-1 g1 (K0 ) *

lp 31/2 Rm 1) 8/3 ) 2/3 2p 3p

ce ce ci
(80)

In dimensional form this becomes

[6/f(KO ]1/3r (1/3) rmw1 2/3 (m/me 12 W 8/3 [o3 3(K )-01g (K)]e
0 e ( 3 301 E1 E

Elp = - 1/2 c 8/3 2/3 2p 3p
ce ce ci 0

(81)

18



6. A Sample Calculation

In this section we shall use the above equations to estimate the

strength of an Alfven wave generated by the mixing interaction. We will

assume that the predominant ion is the proton so that

(Oce/ ci)l/2 = 42.8. (82)

Solving Eq. (12) for this value of the mass-ratio gives

K0 = 4.25 . (83)

From Eqs. (13), (28) and (70) we find that

OO/c e = 0.948 f(K 0 ) = 4.67 (84)

gl(KO) = 3910 g3 (KO) = 3690.

We will further assume that the field line along which the whistlers

are propagating crosses the equator at four earth radii from the center

of the earth so that

r = 2.545 X 10 m , (85)
m

and that the interaction region is located at a distance from the

equator given by

z/r m = 1/9 . (86)

Following Helliwell [1967] we take

W0 /2T = 180 kHz , Wce/21T = 14 kHz , (87)

for the plasma and electron gyrofrequencies. The electric field amplitude

of the whistlers is taken to be

^ ^ -3
Ep2 =E 3 

= 1 X 10 V/m (88)

19



in accordance with the 'high field' case of Dysthe [1971].

The remaining parameters are assumed to be given by

wL/2arl Hz , 81 = 0 rad , 93 = 0.1 rad. (89)

Inserting these values into Eqs. (76) and (77) gives a value for the

generated wave magnetic field of

JBJ = 1.9 m 7 . (90)

We must check that we have not chosen too small a value for z/r m

Using the values assumed above, we find that Eq. (79) takes the form

-- > 0.105 (91)
r

m

The value of 1/9 taken for z/r m satisfies this inequality.

The same values [excepting, of course, Eq. (86)] when substituted

into Eqs. (77) and (81) yield a value for the generated wave magnetic

field of

I Bll = 2.4 my7  (92)

when the interaction region is centered on the equatorial plane.
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7. Maximization of the Wave Fields

In Section 6 we have shown that an Alfven wave field of the order

of 2 my can be generated for a typical set of magnetospheric parameters.

Naturally occurring ULF waves fall in the range of 1-1000 my [Jacobs, 1970],

so the question arises as to whether one can find conditions under which

greater ULF wave intensities might be generated.

To investigate this question we shall maximize the field that can

be generated with respect to z and W 1 . We assume that z is given

by the minimal value permitted by Eq. (79) and use the approximation

[Davies, 1969]

3

Wce = eq (93)

for the electron gyrofrequency, where weq/2w is the gyrofrequency at

the earth's surface on the equator (880 kHz) and re is earth's radius.

Since our theory breaks down as W1 approaches Wci , we assume

W 1 = ci/2 (94)

as the maximal value for the ULF frequency. Substituting into Eq. (76)

and (77) yields the result

[T/f(K )]1/3 W )5/6 rn\5/3 (w  re /3O8/3 (m 2 3g 3 (K O ) - l g (K) *

KO ci m eq E E
Sc ( ce me eqm c/e 2p 3p

(95)

Using the same values for the variables in this formula as we used in

Section 6, we arrive at a field strength of 1B11 = 4.8 my maximized with

respect to W 1 and z

Let us now consider maximization in the case of the interaction region

on the equatorial plane. Substituting Eqs. (93) and (94) into Eqs. (77)

and (81) yields Eq. (95) again, except that the RHS must be increased by
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the factor F(1/3)/[121/6 1/3 ] 1.2. Thus we are led to the rather

remarkable result that the two answers are identical in form with

respect to their dependence on the experimental parameters, except for a

numerical factor. Taking this fact into account, we arrive at a value

of B 1 = 5.8 my for interactions on the equatorial plane.

We now discuss how these values might be further maximized by

variations of the remaining parameters. Since WO/Wce , 10 over most

of the magnetosphere, little is to be gained here. The angle e3 might

be increased to 0.2 radian,increasing the signal strength by a factor of

two. Beyond 0.2 radian our approximations fail, and it is doubtful if

further increase could be gained here. Since IB1 1 - (m/re 5/3, an increase,

possibly as high as a factor of 3, could be made in the field strength by

using more distant field lines. Overall, then, it might be possible to

attain a field strength as high as 40 my.

Finally, no mention has been made of the fact that both whistlers

and Alfven waves can be amplified during their transit along the field

-3

line. Values of the whistler field strength in excess of the 10-3 V/m

used in Section 6 could occur at certain times and give correspondingly

higher values of the generated ULF field. This ULF field could, in turn,

also be amplified.
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Appendix

Here we will derive the interaction length for the special case

where K3 -K -K is a quadratic function of Z i.e.

K3-K2-K1 2  (A.1)

with y as defined in Eq. (30). When synchronism is not exactly satisfied,

Eq. (14) takes the more general form

i i g. F 0 Ep 2 Ep3 exp (-j (K 3 -K 2 -K) R dR).

If we assume propagation nearly along Z , substitute Eq. (A.1), and integrate,

we can reduce this equation to the form of Eq. (16) with

L = exp (- jyZ3/6) dZ . (A.3)

Use of a standard integration formula [GrUbner and Hofreiter, 1961]

reduces this expression for the integration length to Eq. (29).
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